Gordon metric revisited

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sine-gordon Revisited

We study the sine-Gordon model in two dimensional space time in two different domains. For β > 8π and weak coupling, we introduce an ultraviolet cutoff and study the infrared behavior. A renormalization group analysis shows that the the model is asymptotically free in the infrared. For β < 8π and weak coupling, we introduce an infrared cutoff and study the ultraviolet behavior. A renormalizatio...

متن کامل

Critical Boundary Sine-Gordon Revisited

We revisit the exact solution of the two space-time dimensional quantum field theory of a free massless boson with a periodic boundary interaction and self-dual period. We analyze the model by using a mapping to free fermions with a boundary mass term originally suggested in ref. [22]. We find that the entire SL(2,C) family of boundary states of a single boson are boundary sine-Gordon states an...

متن کامل

The boundary supersymmetric sine-Gordon model revisited

We argue that, contrary to previous claims, the supersymmetric sine-Gordon model with boundary has a two-parameter family of boundary interactions which preserves both integrability and supersymmetry. We also propose the corresponding boundary S matrix for the first supermultiplet of breathers.

متن کامل

Distance Metric Learning Revisited

The success of many machine learning algorithms (e.g. the nearest neighborhood classification and k-means clustering) depends on the representation of the data as elements in a metric space. Learning an appropriate distance metric from data is usually superior to the default Euclidean distance. In this paper, we revisit the original model proposed by Xing et al. [24] and propose a general formu...

متن کامل

Classical metric Diophantine approximation revisited

The idea of using measure theoretic concepts to investigate the size of number theoretic sets, originating with E. Borel, has been used for nearly a century. It has led to the development of the theory of metrical Diophantine approximation, a branch of Number Theory which draws on a rich and broad variety of mathematics. We discuss some recent progress and open problems concerning this classica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review D

سال: 2012

ISSN: 1550-7998,1550-2368

DOI: 10.1103/physrevd.86.124024